1964. 找出到每个位置为止最长的有效障碍赛跑路线
1964. 找出到每个位置为止最长的有效障碍赛跑路线
🔴 🔖 树状数组 数组 二分查找 🔗 力扣 LeetCode
题目
You want to build some obstacle courses. You are given a 0-indexed integer array obstacles of length n, where obstacles[i] describes the height of the ith obstacle.
For every index i between 0 and n - 1 (inclusive), find the length of the longest obstacle course in obstacles such that:
- You choose any number of obstacles between
0andiinclusive. - You must include the
ithobstacle in the course. - You must put the chosen obstacles in the same order as they appear in
obstacles. - Every obstacle (except the first) is taller than or the same height as the obstacle immediately before it.
Return an array ans of length n, where ans[i] is the length of thelongest obstacle course for index i as described above.
Example 1:
Input: obstacles = [1,2,3,2]
Output: [1,2,3,3]
Explanation: The longest valid obstacle course at each position is:
- i = 0: [1], [1] has length 1.
- i = 1: [1 ,2], [1,2] has length 2.
- i = 2: [1 ,2 ,3], [1,2,3] has length 3.
- i = 3: [1 ,2 ,3,2], [1,2,2] has length 3.
Example 2:
Input: obstacles = [2,2,1]
Output: [1,2,1]
Explanation: The longest valid obstacle course at each position is:
- i = 0: [2], [2] has length 1.
- i = 1: [2 ,2], [2,2] has length 2.
- i = 2: [2,2,1], [1] has length 1.
Example 3:
Input: obstacles = [3,1,5,6,4,2]
Output: [1,1,2,3,2,2]
Explanation: The longest valid obstacle course at each position is:
- i = 0: [3], [3] has length 1.
- i = 1: [3,1], [1] has length 1.
- i = 2: [3 ,1,5], [3,5] has length 2. [1,5] is also valid.
- i = 3: [3 ,1,5 ,6], [3,5,6] has length 3. [1,5,6] is also valid.
- i = 4: [3 ,1,5,6,4], [3,4] has length 2. [1,4] is also valid.
- i = 5: [3,1 ,5,6,4,2], [1,2] has length 2.
Constraints:
n == obstacles.length1 <= n <= 10^51 <= obstacles[i] <= 10^7
题目大意
你打算构建一些障碍赛跑路线。给你一个 下标从 0 开始 的整数数组 obstacles ,数组长度为 n ,其中 obstacles[i] 表示第 i 个障碍的高度。
对于每个介于 0 和 n - 1 之间(包含 0 和 n - 1)的下标 i ,在满足下述条件的前提下,请你找出 obstacles 能构成的最长障碍路线的长度:
- 你可以选择下标介于
0到i之间(包含0和i)的任意个障碍。 - 在这条路线中,必须包含第
i个障碍。 - 你必须按障碍在
obstacles中的******出现顺序** 布置这些障碍。 - 除第一个障碍外,路线中每个障碍的高度都必须和前一个障碍 相同 或者 更高 。
返回长度为 n 的答案数组 ans ,其中 ans[i] 是上面所述的下标 i 对应的最长障碍赛跑路线的长度。
示例 1:
输入: obstacles = [1,2,3,2]
输出:[1,2,3,3]
解释: 每个位置的最长有效障碍路线是:
- i = 0: [1], [1] 长度为 1
- i = 1: [1 ,2], [1,2] 长度为 2
- i = 2: [1 ,2 ,3], [1,2,3] 长度为 3
- i = 3: [1 ,2 ,3,2], [1,2,2] 长度为 3
示例 2:
输入: obstacles = [2,2,1]
输出:[1,2,1]
解释: 每个位置的最长有效障碍路线是:
- i = 0: [2], [2] 长度为 1
- i = 1: [2 ,2], [2,2] 长度为 2
- i = 2: [2,2,1], [1] 长度为 1
示例 3:
输入: obstacles = [3,1,5,6,4,2]
输出:[1,1,2,3,2,2]
解释: 每个位置的最长有效障碍路线是:
- i = 0: [3], [3] 长度为 1
- i = 1: [3,1], [1] 长度为 1
- i = 2: [3 ,1,5], [3,5] 长度为 2, [1,5] 也是有效的障碍赛跑路线
- i = 3: [3 ,1,5 ,6], [3,5,6] 长度为 3, [1,5,6] 也是有效的障碍赛跑路线
- i = 4: [3 ,1,5,6,4], [3,4] 长度为 2, [1,4] 也是有效的障碍赛跑路线
- i = 5: [3,1 ,5,6,4,2], [1,2] 长度为 2
提示:
n == obstacles.length1 <= n <= 10^51 <= obstacles[i] <= 10^7
解题思路
定义
tails数组:tails[i]表示长度为i+1的最长非递减子序列的最小结尾元素。len记录tails当前有效的长度。
遍历
obstacles并维护tails:- 通过二分查找找到
obstacles[i]在tails中的插入位置:- 如果
tails[mid] ≤ obstacles[i],说明可以延长 LIS,移动left继续查找更大的位置。 - 否则,更新
right收缩范围。
- 如果
- 更新
tails:- 如果
left == len,说明obstacles[i]比tails所有元素都大,直接新增一个 LIS 元素。 - 否则,更新
tails[left],替换已有的更大元素。
- 如果
- 通过二分查找找到
记录结果:
result[i] = left + 1,表示当前位置的 LIS 长度。
复杂度分析
- 时间复杂度:
O(n log n),其中n是obstacles数组的长度。- 遍历
obstacles:O(n)。 - 二分查找更新
tails:每次O(log n)。 - 总复杂度:
O(n log n)。
- 遍历
- 空间复杂度:
O(n),需要额外的空间来存储辅助数组。
代码
/**
* @param {number[]} obstacles
* @return {number[]}
*/
var longestObstacleCourseAtEachPosition = function (obstacles) {
let result = [];
let tails = [];
for (let i = 0; i < obstacles.length; i++) {
let left = 0,
right = tails.length;
while (left < right) {
let mid = Math.floor((left + right) / 2);
if (tails[mid] <= obstacles[i]) left = mid + 1;
else right = mid;
}
if (left === tails.length) tails.push(obstacles[i]);
else tails[left] = obstacles[i];
result.push(left + 1);
}
return result;
};
相关题目
| 题号 | 标题 | 题解 | 标签 | 难度 | 力扣 |
|---|---|---|---|---|---|
| 300 | 最长递增子序列 | [✓] | 数组 二分查找 动态规划 | 🟠 | 🀄️ 🔗 |
